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Multi-vortex solution in the Sutherland model
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Abstract. We consider the large-N Sutherland model in the Hamiltonian collective-field
approach based on the 1/N expansion. The Bogomol’nyi limit appears and the corresponding
solutions are given by static-soliton configurations. They exist only forλ < 1, i.e. for the
negative coupling constant of the Sutherland interaction. We determine their creation energies
and show that they are unaffected by higher-order corrections.

1. Introduction

Classical and quantum solitons in the Calogero–Sutherland model have recently been
intensively studied [1–3]. The underlying motivation is that these extended objects may
presumably play an important role in a deeper understanding of quasiparticle and quasihole
physics of exact solution [4]. The collective theory of [3] offers a field-theoretic framework
for describing semi-classical soliton configurations in the large-N limit. We have recently
shown that in the Calogero model there exist soliton-type finite-energy solutions that can
be obtained by solving a first-order integro-differential equation of Bogomol’nyi type.

In this paper we are primarily concerned with static solitons in the collective-field
formulation of the Sutherland model. These solitons can also be reached by the Bogomol’nyi
saturation. Among them there are some new, periodic multi-vortex solutions which have
not been discussed so far. Their existence stems from the fact that the Sutherland model
is defined on the compact support (circle) and therefore must satisfy periodic boundary
conditions.

2. The collective-field Hamiltonian

The Sutherland system has a Hamiltonian describing spinless particles confined to a ring
and interacting through a 1/r2 pairwise potential [5]:

H = 4π2

L2

(
−1

2

N∑
i=1

d2

dϕ2
i

+ g

4

N∑
i>j

1

sin2
(
(ϕi − ϕj )/2

))
(1)

whereL is the length of the ring andN is the number of particles. We use units in which
h̄ = m = 1, with m being the mass of the particles. Hereϕi is the angular coordinate
of the ith particle. The dimensionless coupling constantg determines the strength of the
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Sutherland pair coupling and is related to the statistical parameterλ of the exclusion statistics
[6] by the relation

g = λ(λ− 1). (2)

For special values ofλ, i.e. λ = 0, we have free bosons, and forλ = 1 and 2 the model is
related to a system of free fermions and to the Haldane–Shastry spin chain [7]. Because of
the singularity of the Hamiltonian forϕi = ϕj , the wavefunction ought to have a prefactor
that vanishes for coinciding particles:

ψ = 1λφ 1 =
∏
i<j

sin

(
ϕi − ϕj

2

)
. (3)

With this factorization, we obtain a new Hamiltonian that acts on the residual, completely
symmetric wavefunctionφ:

H = −1

2

N∑
i=1

d2

dϕ2
i

− λ

2

N∑
i=1

( N∑
j 6=i

cot
ϕi − ϕj

2

)
d

dϕi
+ λ2

24
N(N2 − 1). (4)

The last constant term emerges from the trigonometric identity∑
i 6=j 6=k

cot
ϕi − ϕj

2
cot

ϕi − ϕk

2
= −1

3
N(N − 1)(N − 2). (5)

The non-trivial part of the Sutherland Hamiltonian is now suitable for transformation into a
collective-field representation. For the collective field we take the permutation symmetric
function

ρ(ϕ) =
N∑
i=1

δ(ϕ − ϕi) (6)

obeying the normalization condition∫ 2π

0
dϕ ρ(ϕ) = N. (7)

Next, we reformulate the differential operators in the Hamiltonian (4) in terms of a functional
differentiation with respect to the collective fieldρ(ϕ). For λ = 1, we obtain the result
derived previously by two of us [8] that shows the equivalence of the collective-field
version of the Sutherland model with the one-plaquette restriction of Kogut–SusskindU(N)

gluodynamics [9]. For generalλ, we proceed in a similar way. Using the chain rule

d

dϕi
=

∫
dϕ

∂ρ(ϕ)

∂ϕi

δ

δρ(ϕ)
(8)

and by rescaling the wavefunction

φ(ϕ1, . . . , ϕN) = J 1/28(ρ) (9)

after some calculation we find the Hermitian collective-field Hamiltonian

H = 1

2

∫
dϕ ρ(ϕ)(∂ϕπ(ϕ))

2 + 1

8

∫
dϕ ρ(ϕ)

(
∂ϕ
δ ln J

δρ(ϕ)

)2

−λ− 1

4

∫
dϕ ∂2

ϕδ(ϕ − ϕ′)|ϕ=ϕ′ − λ

4

∫
dϕ ρ(ϕ)∂ϕ cot

ϕ − ϕ′

2

∣∣∣∣
ϕ=ϕ′

+λ
2

24
N(N2 − 1). (10)
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Hereπ(ϕ) is the canonical conjugate of the fieldρ(ϕ):

[∂ϕπ(ϕ), ρ(ϕ
′)] = −i∂ϕδ(ϕ − ϕ′). (11)

The JacobianJ is determined from the hermiticity condition

∂ϕ

(
ρ(ϕ)∂ϕ

δ ln J

δρ(ϕ)

)
= (λ− 1)∂2

ϕρ(ϕ)+ λ∂ϕ

(
ρ(ϕ)−

∫
dϕ′ cot

ϕ − ϕ′

2
ρ(ϕ′)

)
(12)

and reads

J = exp

[
(λ− 1)

∫
dϕ ρ(ϕ) ln ρ(ϕ)+ λ

2

∫
dϕ dϕ′ ρ(ϕ) ln sin2 ϕ − ϕ′

2
ρ(ϕ′)

]
. (13)

The two singular terms in the Hamiltonian (10) do not contribute to leading order inN .
They should be cancelled by the infinite zero-point fluctuations of the collective fieldρ(ϕ).
This will be discussed in detail in section 4.

3. The Bogomol’nyi limit

To find the ground-state energy and the corresponding collective motion in the large-N limit,
we should minimize the energy functional with respect toπ(ϕ) andρ(ϕ). However, in our
case, owing to the special features of the model, there is a much more efficient method for
minimization. The leading term of the collective-field Hamiltonian in the 1/N expansion
is given by the effective potential

Veff = 1

8

∫
dϕ ρ(ϕ)

(
∂ϕ
δ ln J

δρ(ϕ)

)2

= 1

2

∫
dϕ ρ(ϕ)

(
λ− 1

2

∂ϕρ(ϕ)

ρ(ϕ)
+ λ

2
−
∫

dϕ′ cot
ϕ − ϕ′

2
ρ(ϕ′)

)2

. (14)

Owing to the positive definiteness of the effective potential (14), the Bogomol’nyi limit
appears. The Bogomol’nyi bound is saturated by the positive, normalizable solutionρ0(ϕ)

of the equation

λ− 1

2

∂ϕρ(ϕ)

ρ(ϕ)
+ λ

2
−
∫

dϕ′ cot
ϕ − ϕ′

2
ρ(ϕ′) = 0 (15)

with the ground-state energy equal to

E0 = 1
24λ

2N(N2 − 1) (16)

which is the exact result [5]. The most obvious solution is given by the constant-density
configurationρ = ρ0 for any value of the statistical parameterλ. However, there exists one
non-trivial solution to equation (15), given by

ρ(ϕ) = N

2π

√
a2 − 1

a + cosnϕ
(17)

wherea is an arbitrary positive parameter,a > 1, andn is an integer given by

n = λN

λ− 1
. (18)

Indeed, by using∫
dϕ

a + cosnϕ
= 2π√

a2 − 1
(19a)

−
∫

dϕ′ cot
ϕ − ϕ′

2

1

a + cosnϕ′ = − 2π√
a2 − 1

sinnϕ

a + cosnϕ
(19b)
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we can easily recover the solution (17) and the constraint (18). The solution (17) exists
only for special values of the statistical parameter, given by (18). This constraint is a
consequence of the periodicity condition

ρ(ϕ) = ρ(ϕ + 2π). (20)

It represents some kind of stationary waves around the constant condensed stateρ0 = N/2π .
Let us now find an interesting stationary hole-like excitation of particles in the Sutherland

model, which can also be reached by the Bogomol’nyi saturation. Using the identity

P cot
ϕ − ϕ′

2
P cot

ϕ − ϕ′′

2
+ P cot

ϕ′ − ϕ

2
P cot

ϕ′ − ϕ′′

2
+ P cot

ϕ′′ − ϕ′

2
P cot

ϕ′′ − ϕ

2

= 4π2δ(ϕ − ϕ′)δ(ϕ − ϕ′′)− 1 (21)

we can rewrite the collective-field potentialVeff as

Veff = 1

2

∫
dϕ ρ(ϕ)

(
λ− 1

2

∂ϕρ(ϕ)

ρ(ϕ)
+ λ

2
−
∫

dϕ′ cot
ϕ − ϕ′

2
ρ(ϕ′)+ c

2
cot

ϕ

2

)2

+ cλ

8
N2

+c − λc − c2

8

∫
dϕ ρ(ϕ) cot2

ϕ

2
− λ− 1

8
cN − cλπ2

2
ρ2(0)

+cλ
8

(∫
dϕ ρ(ϕ) cot

ϕ

2

)2

. (22)

For the symmetric configurationρ(ϕ) = ρ(−ϕ), representing a hole located at the origin,
ρ(0) = 0, and for the particular value of the constantc given by

c = 1 − λ (23)

the Bogomol’nyi limit appears. The contribution of the squared term inVeff vanishes and
the corresponding configuration satisfies the enlarged Bogomol’nyi equation

λ− 1

2

∂ϕρ(ϕ)

ρ(ϕ)
+ λ

2
−
∫

dϕ′ cot
ϕ − ϕ′

2
ρ(ϕ′)+ 1 − λ

2
cot

ϕ

2
= 0. (24)

The new, singular term in equation (24) is to compensate for the singularity produced by
∂ϕ ln ρ(ϕ) at the origin,ϕ = 0. Equation (24) can be solved by a rational ansatz, and the
normalized, static solution is of the form

ρ(ϕ) = a sin2(ϕ/2)

b2 + sin2(ϕ/2)
(25)

where the constantsa andb satisfy the constraint

− 2λ

λ− 1

abπ√
1 + b2

= 1. (26)

From equation (26) and the normalization condition∫
dϕ ρ(ϕ) = N = 2πa

(
1 − b√

1 + b2

)
(27)

it follows that

a = N

2π
+ 1 − λ

2πλ
and b2 = 1

(Nλ/(1 − λ)+ 1)2 − 1
. (28)
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Since the collective-field density is positive,a andb are necessarily positive parameters and
therefore it follows from relation (26) thatλ < 1. The corresponding energy is given by

E = E0 + 1
8N(1 − λ)(λN − λ+ 1). (29)

We are now going to show that there exists a multi-vortex solution to equation (24).
For this purpose, we must rearrange the effective potentialVeff as follows:

Veff = 1

2

∫
dϕ ρ(ϕ)

(
λ− 1

2

∂ϕρ(ϕ)

ρ(ϕ)
+ λ

2
−
∫

dϕ′ cot
ϕ − ϕ′

2
ρ(ϕ′)+ c cot

nϕ

2

)2

−c
∫

dϕ ρ(ϕ) cot
nϕ

2

(
λ− 1

2

∂ϕρ(ϕ)

ρ(ϕ)
+ λ

2
−
∫

dϕ′ cot
ϕ − ϕ′

2
ρ(ϕ′)

)

−c
2

2

∫
dϕ ρ(ϕ) cot2

nϕ

2
. (30)

In order to get the Bogomol’nyi form, we should show that all terms inVeff, except the
first one, transform into an irrelevant constant functional. All

∫
dϕ ρ(ϕ) cot2(nϕ/2) terms

disappear if the strengthc of the cotangent regulator term is given by

c = 1 − λ

2
n. (31)

Using the summation formula [11]

n cot
nϕ

2
=

n−1∑
k=0

cot

(
ϕ

2
+ kπ

n

)
(32)

and the principal-value identity (21), we can recast the final term inVeff as

n
λ(λ− 1)

4

∫
dϕ dϕ′ ρ(ϕ)ρ(ϕ′) cot

ϕ − ϕ′

2
cot

nϕ

2

= λ(λ− 1)

4

[
−nN

2

2
+ 2π2

n−1∑
k=0

ρ2

(
2kπ

n

)]
. (33)

Here we have assumed thatρ(ϕ) is an even function inϕ. Assuming further thatρ(ϕ)
describes then-vortex-like configuration, with equidistant vanishing points atϕk = 2kπ/n,
our Veff functional finally reduces to

Veff = (λ− 1)2

8
Nn2 − λ(λ− 1)

8
N2n+ 1

2

∫
dϕ ρ(ϕ)

(
λ− 1

2

∂ϕρ(ϕ)

ρ(ϕ)

+λ
2
−
∫

dϕ′ cot
ϕ − ϕ′

2
ρ(ϕ′)+ n

1 − λ

2
cot

nϕ

2

)2

. (34)

Thus we have achieved our goal and the minimal value ofVeff is given by the Bogomol’nyi
saturation:

λ− 1

2

∂ϕρ(ϕ)

ρ(ϕ)
+ λ

2
−
∫

dϕ′ cot
ϕ − ϕ′

2
ρ(ϕ′)+ n

1 − λ

2
cot

nϕ

2
= 0. (35)

The corresponding energy is given by

En = E0 + (λ− 1)2

8
Nn2 − λ(λ− 1)

8
N2n. (36)
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For n = 1, the energy is equal to that found in (29). The enlarged Bogomol’nyi equation
can again be solved by a rational ansatz

ρ(ϕ) = p sin2(nϕ/2)

q2 + sin2(nϕ/2)
. (37)

Contour integration gives

−
∫ π

−π
dϕ′ cot

ϕ − ϕ′

2
ρ(ϕ′) = − pqπ√

1 + q2

sinnϕ

q2 + sin2(nϕ/2)
. (38)

Substituting equation (38) into (35), we obtain the following condition for the positive
parametersp andq:

− 2λ

λ− 1

pqπ√
1 + q2

= n. (39)

From relation (39) and the normalization condition equivalent to (27) we find that the
parametersp andq read

p = 1

2π

(
N + n

1 − λ

λ

)
(40a)

q2 = 1

((λ/(1 − λ))(N/n)+ 1)2 − 1
. (40b)

It is evident that the constraint (39) impliesλ < 1 .

4. Quantum corrections

Let us now turn our attention to the next-to-leading-order terms in the collective Hamiltonian
(10). We are going to study the effect of the small density fluctuations around the hole-like
configuration:

ρ(ϕ) = ρ0(ϕ)+ η(ϕ). (41)

Introducing the operators

A(ϕ) = ∂ϕπ(ϕ)+ i

[
λ− 1

2
∂ϕ

(
η(ϕ)

ρ0(ϕ)

)
+ λ

2
−
∫

dϕ′ cot
ϕ − ϕ′

2
η(ϕ′)− λ− 1

2
cot

ϕ

2

]
(42a)

A†(ϕ) = ∂ϕπ(ϕ)− i

[
λ− 1

2
∂ϕ

(
η(ϕ)

ρ0(ϕ)

)
+ λ

2
−
∫

dϕ′ cot
ϕ − ϕ′

2
η(ϕ′)− λ− 1

2
cot

ϕ

2

]
(42b)

with the c-number commutator

[A(ϕ),A†(ϕ′)] = −(λ− 1)∂ϕ∂ϕ′
δ(ϕ − ϕ′)
ρ0(ϕ)

+ λ∂ϕ cot
ϕ − ϕ′

2
(43)

the collective Hamiltonian can be written up to the quadratic terms inη andπ as

H = E0 + N

8
(1 − λ)(λN − λ+ 1)+ 1

2

∫
dϕ ρ0(ϕ)A

†(ϕ)A(ϕ). (44)

The divergent terms disappear, as can be easily checked using the commutator (43). The
collective Hamiltonian is semi-definite and there exists the collective-field wavefunctional
8(η) such that

A(ϕ)8(η) = 0. (45)
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For this wavefunctional the correction due to fluctuations vanishes. Solving equation (45),
we easily get

8(η) = exp

{
λ− 1

4

∫
dϕ

η2(ϕ)

ρ0(ϕ)
+ λ

4

∫
dϕ dϕ′ η(ϕ) ln sin2 ϕ − ϕ′

2
η(ϕ)

− λ− 1

2

∫
dϕ ln sin2 ϕ

2
η(ϕ)

}
. (46)

From this result we can reconstruct the Schrödinger wavefunction9(ϕ1, . . . , ϕN) for the
N -particle system, which corresponds to the one-hole configuration. It is given by

9(η) = 1λJ 1/28(η). (47)

Here, the1 prefactor is present owing to the extraction (3). The Jacobian of the
transformation fromϕi into ρ(ϕ) rescales the wavefunctional by theJ 1/2 factor. By
expanding the Jacobian to the quadratic terms inη and using the relations (46), (47) and
the Bogomol’ny equation forρ0 (24), we are left with

9(η) = 1λ exp

[
1 − λ

2

∫
dϕ ln sin2 ϕ

2
η(ϕ)

]
. (48)

If we substitute equation (6) in (48), we obtain the wavefunction forN particles:

ψ(ϕ1, ..., ϕN) = 1λ
N∏
i=1

sin1−λ ϕi
2
. (49)

It can easily be checked that this wavefunction does indeed describe the configuration with
known energy (29), provided thatρ(ϕ) satisfies∫

dϕ cot
ϕ

2
ρ(ϕ) = 0 i.e.

N∑
i=1

cot
ϕi

2
= 0. (50)

The wavefunctional for then-hole-like configuration can be formed along similar lines,
explicitly given for the one-hole case. It reads

ψn(ϕ1, ..., ϕN) = 1λ
N∏
i=1

sinn(1−λ) nϕi
2
. (51)

It can be shown that this wavefunction is indeed the eigenfunction of theN -particle
Hamiltonian (1) with known energy (36), provided thatρ(ϕ) satisfies∫

dϕ cot
nϕ

2
ρ(ϕ) = 0 i.e.

N∑
i=1

cot
nϕi

2
= 0. (52)

Let as briefly comment on the corresponding quantum corrections in the case of the
Calogero model. Owing to the Bogomol’nyi form we can in the same way show the
stability of the static solitons [3] against first-order quantum corrections.

5. Summary

We have found two main results. The first result is that in the collective-field formulation of
the Sutherland model there exist multi-vortex static configurations which could be reached
by the Bogomol’nyi saturation. Since we know that in the Calogero model there exists
a moving soliton [2, 3], it is of interest to look for the existence of moving-multi-vortex
solutions.
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The second result is that the energies of these configurations are not affected by the next-
to-leading-order corrections stemming from the quantum collective-field fluctuations. This is
what happens in the supersymmetric theory where the Bogomol’nyi bound does not receive
quantum corrections [12]. Therefore we conclude that there must exist a supersymmetric
extension of the Calogero–Sutherland model in the collective-field formulation. Forλ = 1,
this has already been done in [13].
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